季曉春1,王建華3,嵇保健2,蔡守平1
(1. 安科瑞電氣股份有限公司,上海 201801;
2. 東南大學,電氣工程學院,江蘇 南京210096;
3. 南京工業(yè)大學自動化與電氣工程學院,江蘇 南京 210000;)
Interleaved Flyback Photovoltaic Grid-connected Micro Inverter
JI Xiaochun 1,WEI Shaochong 2,WANG Jianhua3,JI Baojian2,
CAI Shouping1
(1. Acrel Co., Ltd, Shanghai 201801, China;
2. School of Automation & Electrical Engineering, Nanjing University of Technology,
Nanjing Jiangsu 210009, China;
3.School of Electrical Engineering, Southeast University, Nanjing Jiangsu 210096, China;)
摘要:獨立光伏組件的微型逆變器能克服傳統(tǒng)光伏系統(tǒng)存在的陰影問題。詳盡介紹了某型準單級式交錯并聯(lián)微逆變器的設(shè)計、分析及其控制策略。該微型逆變器基于高頻環(huán)節(jié)逆變技術(shù),實現(xiàn)了初、次級電氣隔離,解決了漏電流問題;采用有源箝位技術(shù)吸收漏感能量,實現(xiàn)了開關(guān)管的零電壓開關(guān)(ZVS);采用變步長的擾動觀察法實現(xiàn)zui大功率點跟蹤(MPPT),輸入電壓前饋方法可解決準單級式微逆母線電壓崩潰問題。220W樣機試驗驗證了該方案及控制策略的可行性,整機MPPT效率為99.5%,zui率達到95%。
關(guān)鍵詞:微逆變器;高頻環(huán)節(jié);zui大功率點跟蹤
Abstract:To overcome the traditional photovoltaic systems have low overall output power caused by the partial mask, proposed a single PV module for a single micro-inverter topology and its control strategies. Using single-stage interleaved flyback converter, In order to overcome problem of flyback transformer primary side leakage,using Active block circuit to absorb the leakage inductance energy, achieving a zero-voltage switching tube switch, increases machine efficiency. Gives a system based on digital signal processor control process, the system uses a variable step size perturbation and observation method to achieve the maximum power point tracking, making each photovoltaic panels working on the maximum power point. Build a experiment prototype to verify the topology and control strategy is feasible solutions.
Keywords: Micro inverter;Flyback;DCM mode;MPPT
1 引言
傳統(tǒng)集中式、組串式光伏并網(wǎng)發(fā)電系統(tǒng)通過對光伏電池板的串并聯(lián),在提高母線電壓后,供給并網(wǎng)逆變器將電能輸送到電網(wǎng)。其結(jié)構(gòu)簡單,轉(zhuǎn)換效率高,尤其適合于日照較好的電站系統(tǒng)。但在東部城鄉(xiāng)地區(qū),云層及建筑物、樹木遮擋,以及單塊電池板發(fā)生故障等因素,將嚴重降低整個系統(tǒng)的發(fā)電量。配備在每一個光伏組件后面的微型逆變器,通過對各組件的獨立控制使其工作在zui大功率點,大大提高了系統(tǒng)抗局部陰影的能力,以及整體發(fā)電量。盡管其成本相對較高,但模塊化架構(gòu)、高可靠性、高發(fā)電量、安裝方便等優(yōu)點使其為目前分布式光伏發(fā)電的一個重要方向。
在此詳盡介紹了某型準單級式交錯并聯(lián)微逆變器設(shè)計、分析及控制策略。高頻環(huán)節(jié)逆變技術(shù)不僅實現(xiàn)了微逆變輸入輸出電壓大升壓比匹配,同時初次級電氣隔離解決不了不隔離系統(tǒng)漏電流問題;而且基于有源箝位技術(shù)吸收漏感能量,實現(xiàn)了開關(guān)管的ZVS。系統(tǒng)控制框圖及流程表明采用變步長的擾動觀察法能實現(xiàn)MPPT,輸入電壓前饋方法可解決準單級式微逆母線電壓崩潰問題。
2 主電路拓撲
2.1 拓撲選擇
準單級式反激逆變器僅有一級的功率變換[4],拓撲簡單,尤其適合低成本應用場合的要求。在斷續(xù)模式(DCM)及臨界連續(xù)模式(BCM)下,其呈現(xiàn)電流源特性,控制系統(tǒng)設(shè)計簡單,市目前光伏微逆變器的理想拓撲。由于反激變換器輸出功率有限,在微逆變器系統(tǒng)結(jié)構(gòu)中,這里采取如圖1所示交錯并聯(lián)技術(shù):將兩路反激變換器輸入并聯(lián),輸出并聯(lián),原邊的主管交錯180度導通以減小輸入輸出電流紋波,同時公用一組輸出性翻轉(zhuǎn)橋;考慮到反激變壓器漏感的存在,進一步采取有源鉗位技術(shù)回收漏感,并實現(xiàn)了主管和輔助管的ZVS,減小開關(guān)損耗,提高了電路效率。
圖1 交錯并聯(lián)反激型微逆變器拓撲結(jié)構(gòu)
此時光伏組件經(jīng)過反激變換器主開關(guān)SPWM高頻調(diào)制,得到包絡(luò)線為單性工頻正弦半波的輸出電流。交流側(cè)的工頻換向橋驅(qū)動時序跟蹤電網(wǎng)電壓,將前面的單性工頻正弦半波翻轉(zhuǎn)為正弦波并網(wǎng)電流,與電網(wǎng)電壓同頻同相。
2.2工作模式分析
根據(jù)變壓器的磁通是否連續(xù),可將反激變換器的工作模式分為電感電流連續(xù)模式(CCM)、DCM及BCM 3種。CCM模式下反激逆變器相對穩(wěn)定性較差,需要妥善處理。目前主流的反激逆變器以DCM及BCM為主,但由于在BCM模式下,需要采用變頻控制,計算和控制都較為復雜,因此這里采用DCM。相對BCM及CCM,DCM的優(yōu)點是恒頻工作,控制簡單,且了次級二管反向恢復問題;缺點是相比CCM此時勵磁電感較小,器件峰值電流應力較大。
為確保變換器工作在DCM,需其初級電感Lp即勵磁電感小于臨界連續(xù)電感值。定義工頻周期Tgrid是高頻開關(guān)周期的2k倍,定義dp為zui大占空比,由于輸入電流大小和占空比成正比,因此每個開關(guān)周期的占空比也是正弦脈絡(luò)dpsin(iπ/k),則變壓器原邊電流idc的平均值為:
化簡得
將Pin=Udc*Idc,avg帶入上式可得變壓器原邊電感:
3 控制系統(tǒng)
3.1控制框圖
準單級式微逆變器需同時完成MPPT、鎖相、孤島檢測和入網(wǎng)電流控制[5][6]。如圖2所示,通過MPPT計算提供得到的并網(wǎng)電流的基準幅值Io大小,從而確保光伏組件以zui大功率向電網(wǎng)傳輸能量。鎖相提供并網(wǎng)電流的相位信息,確保入網(wǎng)電流與電網(wǎng)電壓同頻同相。孤島檢測是并網(wǎng)逆變器所具備的功能,在電網(wǎng)異常情況下關(guān)閉逆變器,確保人員和設(shè)備的安全。入網(wǎng)電流控制是并網(wǎng)逆變器的核心控制部分,這里通過采樣輸出電流閉環(huán)控制,確保了高質(zhì)量的并網(wǎng)電流(理論上在DCM下,開環(huán)控制即可實現(xiàn)電流源并網(wǎng),但其并網(wǎng)電流總諧波含量相對較高)。
圖2 控制系統(tǒng)
3.2準單級式系統(tǒng)MPPT及直流母線電壓控制
MPPT是通過相應的算法,不斷調(diào)整并網(wǎng)電流基準,調(diào)整逆變器輸出功率,從而調(diào)節(jié)光伏組件的輸出功率,使得光伏組件輸出功率zui大。
擾動觀察法原理簡單,易于實現(xiàn),是MPPT算法中zui常用的方法之一。其算法原理是當前次的輸出功率與前一次的輸出功率作比較,假設(shè)P(k+1)>P(k),那么將光伏輸出電壓基準繼續(xù)向著這一次變化的相同的方向進行擾動;反之,若輸出功率變小,則在下個周期改變擾動的方向,如此進行反復擾動、比較直至光伏系統(tǒng)輸出功率達到zui大。算法流程如圖3所示。擾動觀察法步長的大小決定了算法跟蹤的速度和系統(tǒng)在zui高處附近來回振蕩的幅度,因此,本文采取一種變步長的擾動觀察法[7],具體方式當功率較每小時,擾動值C取值加大;當功率較大后,適當減小擾動值C的取值。
圖3擾動觀察法算法流程
在準單級并網(wǎng)逆變系統(tǒng)中,單純的MPPT 環(huán)無法保證很好的動態(tài)性能,實現(xiàn)系統(tǒng)的穩(wěn)定。當發(fā)生外界條件突變或者程序誤判斷時,直流母線電壓會劇烈震蕩甚至奔潰。如圖3所示,在原有的控制基礎(chǔ)上加一個輸入電壓環(huán),防止在MPPT 誤判斷時直流母線電壓的劇烈震蕩,可以防止母線電壓的崩潰,實現(xiàn)系統(tǒng)的穩(wěn)定運行。
4 實驗結(jié)果
為驗證上述交錯并聯(lián)準單級高頻環(huán)節(jié)光伏并網(wǎng)微逆變器方案,在實驗室完成了基于DSP28035控制的220W微逆變器樣機研制。前級直流輸入電壓Vpv=35VDC,并網(wǎng)電壓Vo=220VAC,電網(wǎng)頻率fac=50Hz, 主管V1開關(guān)頻率fs=135Khz,濾波電感L1=1mH,光伏組件及交流電網(wǎng)采用光伏模擬器及交流電源模擬。圖4a,b分別為輕載與滿載時并網(wǎng)電流io的輸出波形,可見io與ug同頻同相,且io波形質(zhì)量都較好;由圖5c可見,V1在開通與關(guān)閉前,漏源電壓為零,實現(xiàn)了V1的ZVS;圖4e給出了變壓器初級電壓up、次級電壓us和電流is,ug的波形,驗證了工頻翻轉(zhuǎn)橋的可行性。
(a) 輕載輸出
(b) 滿載輸出
(c) 主開關(guān)管波形
(d) 箝位管波形
(e) 變壓器原副邊電壓波形
圖4 實驗波形
圖5給出光伏模擬器測試的MPPT效果,MPPT效率為99.5%。
圖5 I-U和P-U曲線
圖6a效率測試曲線進一步表明微逆變器整機在整個負載范圍內(nèi)均達到了較高的效率,滿載zui大效率達到了94%,圖6b為在不考慮輔助電源損失下功分析儀測試結(jié)果,zui率為95%,并網(wǎng)電流THD小雨1.5%,驗證了微逆變器方案的可行性。
圖6 效率曲線及THD測試
5 結(jié)論
介紹了某型準單級式交錯并聯(lián)微逆變器設(shè)計、分析及控制策略。該微型逆變器具有以下特點:基于高頻環(huán)節(jié)逆變技術(shù),實現(xiàn)了初次級電氣隔離,解決了不隔離系統(tǒng)漏電流問題;采用有源箝位技術(shù)吸收漏感能量,實現(xiàn)了開關(guān)管的零電壓開關(guān),減小開關(guān)損耗;采用變步長的擾動觀察法實現(xiàn)zui大功率點跟蹤,基于輸入電壓前饋方法解決準單級式微逆母線電壓崩潰問題;220W樣機整機zui大功率跟蹤效率為99.5%,滿載zui率達到94%。不考慮輔助電源時,zui率為95%,并網(wǎng)電流總諧波畸變率小于1.5%。
文章來源:《電力電子技術(shù)》2014年第6期
參考文獻